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Università di Milano-Bicocca,

Piazza della Scienza, 3, Milano 20126, Italy, and

INFN, Sezione di Milano-Bicocca,

Piazza della Scienza, 3 Milano 20126, Italy, and

Theory Division, CERN, Geneva, Switzerland

E-mail: Giuseppe.Marchesini@mib.infn.it

Enrico Onofri

Università di Parma,
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Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal

result diverges at a critical value signalling the onset of a new regime. We then discuss

the main features of our explicitly unitary S−matrix down to the Schwarzschild’s radius

R = 2G
√

s, where it diverges at a critical value b ≃ 2.25R of the impact parameter. The

nature of the singularity is studied with particular attention to the scaling behaviour of

various observables at the transition. The numerical approach is validated by reproducing

the known exact solution in the axially symmetric case to high accuracy.
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1. Introduction

We discuss in this paper the high-energy quantum string-gravity scattering by using the

string formulation of Amati, Ciafaloni and Veneziano [1, 2]. Here we concentrate on the

study of the high-energy elastic S-matrix for two colliding strings in the limit in which the

string length λs is negligible with respect both to the gravitational Schwarzschild radius R

and to the impact parameter b of the the two colliding strings

λs

R
→ 0 ,

λs

b
→ 0 , R = 2G

√
s , λs =

√
α′~ , (1.1)

where
√

s is the center of mass energy. In this point-like-limit d=4 we rely on the observa-

tion that, because of the soft multi-loop strings amplitudes [1], the S-matrix exponentiates,

in terms of an eikonal function of order Gs/~, times a function of R2/b2. In this limit the

two colliding strings can be approximated by two massless particles

S = e
i

~
Acl , Acl = 2πGs Ãcl . (1.2)

Here Acl is the classical value of an effective action given by a functional of gravitational

fields constructed in terms of effective graviton vertices derived by Lipatov [3] in the study

of the multi-Regge limit in (QCD and) gravity. The fields involved in the effective action A
are the longitudinal and the transverse components of the metric tensor. The two colliding

particles are described in terms of the energy-momentum tensor along the two light cone

directions x± = x0 ± x3.
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The classical region to study is the case when R is small and it approaches a critical

value Rcrit at a fixed value of b. Here the critical value of R is obtained by two approxima-

tions: we neglect rescattering terms and we neglect the infrared singular term of graviton

interaction. Within these two approximations one is left with the critical behaviour

R2 ∂

∂R2
Ãcl(b, s) ∼ (1−R/Rcrit)

1/2 ⇒ Ãcl ∼ (1−R/Rcrit)
3/2 + constant . (1.3)

This critical behaviour has been derived in a modified model exhibiting axial symmetry

(where the singular ~b−dipole disappears) but here it will be reproduced in the actual case

of a dipole at a distance ~b.

It is amusing to note that our critical value for Rcrit/b ≈ .455(1) is not far from the

one obtained from the closed trapped surfaces in the axisymmetric case [4] signalling the

transition from the present dispersive phase to the black-hole one, see also [5, 6].

The paper is organized as follows. First we introduce the model (section 2) and explain

the two relevant approximations for the dipole picture with impact parameter ~b. Then we

explain the solution for R ≤ Rcrit and discuss the search of the critical index (section 3).

We then discuss the results and the behaviour of several observables near critical region

with R ≤ Rcrit. Here we discuss also the region R > Rcrit in the axial case, which is not

solvable by our iteration technique. We end with some conclusions.

2. The model

Here we recall the essential points of the effective action introduced in [1, 2] which are

needed to describe our numerical study and we describe the two basic simplifications that

are performed to give

A
2πGs

=

∫

d2x
(

a+ t+ + a− t− − 1

2
~∂a+ · ~∂a− +

1

2
(πR)2

(

−(~∂ 2φ)2 + 2φSa+a−

))

Sf,g(~x) ≡ ~∂ 2f(~x) ~∂ 2g(~x) − ∂i∂jf(~x) ∂i∂jg(~x) . (2.1)

Here a±(~x) are the longitudinal graviton components (dotted lines in figure 1). Upon

factorization the light-cone delta-function δ(x∓) respectively, they depend only on the

transverse variables ~x = (x1, x2). In the same way t±(~x) correspond to the longitudinal

components of the energy-momentum tensor associated to the two colliding particles at

impact parameter ~b

t±(~x) = δ2

(

~x∓ 1

2
~b

)

. (2.2)

The field φ(~x) corresponds (upon factorizing the light-cone function θ(x+x−)) to the trans-

verse graviton component (the wavy line in figure 1a).

The first two terms of Ã correspond to the eikonal exchange of longitudinal gravitons

(Coulomb scattering). This part of the action (R = 0) gives rise to the classical field

a
(0)cl
± (~x) = − 1

π
ln

(

λ|~x± 1

2
~b|
)

, (2.3)
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k1

k2

k = k1 + k2

a)
b)

Figure 1: (a) the scattering vertex between the two partons at distance ~b . The crosses are the

external particles. Dotted lines are a± and wiggly lines denote φ. (b) The rescattering of partons.

with λ an infrared cutoff. The corresponding classical action is given by

A(0)cl(b)

2πGs
= − 1

π
ln(λb) , (2.4)

which shows that the infrared cutoff λ is a divergent Coulomb phase contribution which

does not affect observables. It reproduces Einstein’s deflection angle sin 1
2θcl = R/b.

The other pieces of A correspond to quantum correction proportional to R2/b2. In

particular the last term corresponds to the effective vertex [3] in figure 1a. The form of A
in eq. (2.1) is based on two simplifications.

• No rescattering: the effective vertex in figure 1b, the rescattering term, is neglected.

In this case the dependence of the fields on the light-cone directions x+ and x− of the

two colliding particles can be factored into the two delta functions δ(x±). Dropping

this “trivial” dependence, one is left with the fields in the effective action which

depend only on the two transverse space components ~x.

• No infrared-singular transverse graviton component. The Lipatov vertex of figure 1a

is given by (θ12 = θ ~k1
~k2

)

V µν
LLT( ~k1, ~k2, ~k) ∼ 1

~k2

(

sin2 θ12 ǫµν
TT(~k)− sin θ12 cos θ12 ǫµν

LT(~k)
)

, (2.5)

with ǫTT and ǫLT the two independent transverse-traceless tensors of the graviton

(see for example eq. 2.5 of ref. [2]). For ~k → 0 the first term sin2 θ12/~k
2 remains finite
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while the second one, sin θ12 cos θ12/~k
2 diverges. In our study we neglect the ǫLT

transverse graviton component which brings in infrared divergences. The possible

rôle of these singular components and the cancellation of the infrared singularities

in the S-matrix has been discussed in [2] by using coherent states similar to what is

done in QED and QCD [7].

In the space representation the first term of the vertex (2.5) gives rise to the 2φSa+,a−

term in the action. Indeed

F ( ~k1)G( ~k2) sin2 θ12 ⇒ Sf,g(~x) , (2.6)

with f(~x) and g(~x) the Fourier transforms of the two functions F ( ~k1) and G( ~k2).

The second term, infrared singular, gives (ǫ12 =ǫ21 =−1)

F ( ~k1)G( ~k2) sin θ12 cos θ12 ⇒ ~∂ ∂if(~x) · ~∂ ∂jg(~x) ǫij (2.7)

which for the free solution (2.3), with f = a
(0)cl
+ , g = a

(0)cl
− , is proportional to ~x ∧~b.

The contribution from this infrared singular vertex is neglected in eq. (2.1).

The equations of motion (2.1) are readily obtained by using the fact that φSa+a− = a± Sφa∓

up to total derivatives. One has

~∂ 2 a±(~x) = −2 δ2

(

~x± 1

2
~b

)

+ 2(πR)2 Sφa±(~x)

(~∂ 2)2 φ(~x) = −Sa+ a−(~x)

(2.8)

If a±(x), φ(x) is a solution, then

ã±(~x) = a∓(~b− ~x) , φ̃(~x) = φ(~b− ~x) . (2.9)

is also a solution. If the solution is unique (e.g. for small R) then it is symmetric. Per-

turbative corrections in R2/b2 to eq. (2.3) are finite. To first order the action is given

by

Acl(b)

2πGs
=

1

π

(

− ln(λb) +
3R2

8b2
+ · · ·

)

. (2.10)

Here one has used (2.1) thus neglecting the transverse ǫLT graviton component. This latter

has been computed in [2] and gives an additional contribution R2/(8πb2).

3. Solution by an iterative algorithm

In the small R regime we solve eq.(2.8) by iteration (∆ = ~∂ 2)

a±(~x) ← (1− ω)a±(~x)− ω ∆−1
(

2 δ2(~x∓~b/2) − 2(π R)2 Sφ,a±

)

(3.1)

φ(~x) ← (1− ω)φ(~x)− ω ∆−2 Sa+,a− (3.2)
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(Sf,g as given in eq. (2.1)). Here ω is a “relaxation parameter” which may help convergence;

in a linear context, the iteration converges if the r.h.s. has norm less than one, using the

relaxation parameter can be useful if all eigenvalues have real part less than one. In our

non-linear context the role of relaxation is not immediately clear. It is only used to check

that divergence of the iteration is not changed by a trivial modification of the iteration

mechanism. All results presented later on correspond to ω = 1.

In the actual implementation of the algorithm, we substitute the Dirac deltas with

extended normalized Gaussian source terms

δ2(~x±~b/2)→ N exp

{

−(~x±~b/2)2

2σ

}

(3.3)

since dealing with smooth functions improves the numerical stability; the Gaussian width

σ enters as a smearing parameter in the calculation.

3.1 Algorithmic details

The calculation is organized as follows. We choose a finite 2−dimensional lattice of size 2L

and lattice spacing 2L/N , typically L = 64, N = 256; we introduce the dual lattice (k1, k2)

and define the basic differential operators in terms of ki, i.e. ∆→ −k2
1 − k2

2, etc. The r.h.s.

of the iteration map is then computed by going to Fourier space where necessary and taking

local products of fields in coordinate space. This is done very efficiently for any N by using

FFTW [8], the best implementation of the fast Fourier transform to our knowledge. The

main problem is to monitor the iteration and stop it when it can be decided that we have

convergence or divergence. To monitor the iteration we choose a specific component of the

action, namely the part proportional to R2 (A = 2πGs Ã)

M =
1

2
(πR)2

∫

d2x
(

−(~∂ 2φ)2 + 2φSa+a−

)

≡ Ãφ2 + Ãφa+a− = R2 ∂

∂R2
Ã . (3.4)

A second monitoring device is provided by the fact, already used in [2], that on the solutions

one has

2Ãφ2 + Ãφa+a− = 0 . (3.5)

When M shows a variation less that a certain prefixed value (say 10−6) then we stop the

iteration and proceed to a more stringent convergence check based on the analysis of the

linearized equation near the approximate solution.1 This is done as follows: let
(

a±
φ

)

← K(a±, φ) (3.6)

denote the iteration map; near convergence let φ = φ̃ + δφ, a± = ã± + δa± where φ̃, ã±
represent the approximate solution obtained at the last iteration. Then we have

(

δa±
δφ

)

←
(

D11 D12

D21 D22

)(

δa±
δφ

)

(3.7)

1For R > Rcrit the iteration will diverge and the program will go in overflow unless we apply some

strategy to early identify a divergent behaviour. A possible method is to monitor the curvature of the

function M as a function of the iteration count.
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where the matrix Dij(ã±, φ̃) is obtained by linearizing the equation and discarding

quadratic terms in δa±, δφ. The spectrum of Dij is then computed. If the spectrum

is contained in the unit circle then we conclude for convergence, otherwise for divergence.2

The linear operator D contains partial differential operators and the fields a±, φ. Its

largest eigenvalue, in absolute value, is computed3 by the Arnoldi algorithm contained in

the mathematical library ARPACK [9].

3.2 The search for Rcrit

Running the algorithm, we observe that the iteration converges at small values of R, where

we effectively obtain the perturbative solution. However, increasing the parameter one

finds that the algorithm ceases to converge at a value of R = Rcrit proportional to the

impact parameter.

To identify the value of Rcrit where the transition occurs we adopt a “bisection

method”. Namely we start from an interval [Rmin, Rmax] and set R = 1
2(Rmin + Rmax);

if the iteration starting from R is divergent we set Rmax = R otherwise Rmin = R; the

process is replicated until Rmax −Rmin is less than a desired accuracy (typically 10−5).

The value thus obtained is however affected by the presence of “technical” parameters

whose impact on the calculation must be carefully analyzed. The parameters are L,N,ω, σ,

i.e. infrared and ultraviolet cutoffs, the relaxation parameter and the width of the sources.

On dimensional grounds one has

Rcrit = b FN (σ/L2, b/L, ω) , (3.8)

and, in principle, the limit σ → 0, L→∞, N →∞ should be taken. It turns out that the

iteration scheme is not sensitive to the relaxation parameter, hence we drop it from now on.

On the other hand the dependence on infrared (L) and ultraviolet (σ) parameters is quite

accentuated and some fitting procedure must be adopted in order to get the continuum

infinite volume limit. Dependence on N on the other hand is very weak above N ∼ 100,

as we argue in the next paragraph.

Continuum limit and finite size scaling. To estimate the N dependence we performed

a series of iterations starting with different parameters but keeping the adimensional ratios

inside FN fixed. One finds that the results reach a flat plateau very soon (above N=100

the numbers agree to 4 figures). This is surely due to the way differential operators are

dealt with: any finite-difference scheme would introduce a systematic error of O(N−n) -

e.g. the roughest scheme corresponds to ~∂ 2 → 2
∑

i(1 − cos(aki))/a
2; using k2 itself in

Fourier space makes the error exponentially small in N .

Having settled the N dependence, systematic errors coming from σ and L should be

addressed. A long run on a lattice of values for b, σ and L manifests a good scaling

behaviour (i.e. the plot of R2/b2 is acceptably smooth, hence showing compatibility with

a scaling behaviour).

2As an option we may consider the eigenvalue with largest real part: if this is larger than one we have

divergence, otherwise convergence could be achieved by a suitable choice of relaxation parameter.
3Recent versions of Matlab c© provide a user-friendly interface to the package.
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empirical fit
best fitted slope = 0.445

Figure 2: Rcrit vs. b in the dipole model.

4. Results

The main result regards the dependence of the critical value of R with respect to the impact

parameter. We ran the program for a three-dimensional grid of values σ ≪ b≪ L) and we

looked for a best fit to the FN in eq. (3.8) assuming a simple form

FN =
√

1 + α1σ/b2 + α2(b/L)2 + α3(b/L)4 + . . . . (4.1)

This gives (see figure 2)

Rcrit ≈ 0.445(1) b . (4.2)

The evidence from the fit is that the correct slope corresponds to the envelope of the data

from below, which can be interpreted in the sense that ultraviolet and infrared cutoffs both

make the system more stable against collapse.

The axially symmetric case. A comparison with the result [2, 4] obtained in the case

of axial symmetry, namely Rcrit/b = 21/2/33/4 ≈ 0.6204 will support our analysis. In this

case one of the sources is uniformly distributed around an annulus of radius b, while the

other is localized at the center. The difference between this result and the value in eq. (4.2)

suggests that the critical value, due to the non-linearity of the equations, may depend on

the sources. In order to validate the accuracy of our numerical code, we applied it to the

study of this axially symmetric case. A fit conducted with the same systematics as before

gave the result

Rcrit ≃ 0.6216 b (4.3)

which presents the same pattern as in figure 2 and reproduces the exact slope to an accuracy

of 0.5%; this check makes us confident on the accuracy of our code and allows us to estimate

the error in eq. (4.2) to less than 1%.
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Figure 3: log-log plot of the spectral radius as a function of R in the dipole model.

4.1 Critical behaviour

In order to better understand the nature of the transition at R = Rcrit we shall now

present some results about the critical behaviour of certain observables. The main fact

we derive from our numerical data is that all observables that we examined have a scaling

behaviour near the transition which can be reproduced very accurately by a square root

singularity. This fact supports the conclusion that we are in presence of a genuine transition

and not simply a breakdown of the iteration scheme. The argument is as follows: the

iteration scheme represents an efficient way to sum up the perturbative expansion in the

parameter K = 2(πR)2; as such the iteration’s convergence radius is regulated by the

nearest singularity in the complex K plane. Our analysis shows that the divergence of the

iteration scheme is caused by a singularity on the real line, which must then correspond to

a physical singularity.

Spectral properties. Let’s start with the spectrum of the linearized equation which is

used in monitoring the convergence of the iteration algorithm. From the data a scaling

property emerges which appears to be rather robust against variations of other parameters,

namely the dependence of the spectral radius against R. Let λ0 denote the spectral radius

of the linearized equation: the plot of 1− λ0 as a function of
√

1−R/Rcrit is reported in

the next picture (figure 3) and it suggests a relation of the type

1− λ0 = C
√

1−R/Rcrit (4.4)

with C close to one.

The plot reports data from different values of b and it hints at the fact that there is

universality in the relation λ0 = λ0(R/Rcrit), i.e. the dependence on the impact parameter is

only through the function Rcrit(b) and it is quite insensitive to the various cutoff parameters.
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Figure 4: The scaling of the leading eigen-

value in the axial symmetric case below crit-

icality

Figure 5: The leading eigenvalue above

Rcrit in the axial symmetric case above crit-

icality

A further investigation regards the region R > Rcrit in the case of axially symmetric

sources. It is known [2, 4] that above the transition the solution becomes complex. We

computed the spectrum of the linearized equation around the exact solution. The spec-

tral radius is compatible with the analytic continuation of eq. (4.4), namely the largest

eigenvalue gets an imaginary part — see figure 5.

Classical Action, hTT and hLT . Near criticality we examined other observables, namely

global quantities like

• the action piece M as in eq. (3.4);

•
∫

d2x h2
LT, which does not enter the action in the present approximation;

• hTT = ∆φ, integrated over a finite region ∝ b.

As expected, we observed the same square root behaviour for M

M = R
∂

∂R
Ã(b,R) ∼

√

1−R/Rcrit (4.5)

and for other cases - see figure 6. By integrating over R, one gets eq. (1.3).

5. Conclusions

We have neglected the string-size effects for R , b≫ λs (with λs the string effect) and studied

the region without rescattering and without trace infrared effects for R small compared to

b in (2.1). We arrived at the critical region in (4.5) with the square root behaviour ensured

for various decades. This result nicely agrees with that obtained in the axially symmetric

case [2, 4]. The fact that at the transition an eigenvalue 1 appears in the spectrum of

the linearized equation shows that the solution (if any) at R > Rcrit is unstable against
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Figure 6: Scaling behaviour ofM, hTT and hLT near Local observables.

small perturbations, hence features that have been considered irrelevant in the derivation

of eq. (2.1) may come back as relevant.

Finally, it is interesting that the critical value of bcrit ≈ 4.5G
√

s that we find is not far

from the values [4] obtained in similar studies of closed trapped surfaces which discriminate

the transition from the present dispersive phase to the black-hole one. It is interesting that,

taken at face value, our result would increase the cross section for black hole production

given in [5], but we were unable to find a physical justification for this fact.
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